Abstract
Generalized- $$\alpha $$ ? methods are very popular in structural dynamics. They are methods of Newmark type and combine favourable stability properties with second order convergence for unconstrained second order systems in linear spaces. Recently, they were extended to constrained systems in flexible multibody dynamics that have a configuration space with Lie group structure. In the present paper, the convergence of these Lie group methods is analysed by a coupled one-step error recursion for differential and algebraic solution components. It is shown that spurious oscillations in the transient phase result from order reduction that may be avoided by a perturbation of starting values or by index reduction. Numerical tests for a benchmark problem from the literature illustrate the results of the theoretical investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.