Abstract

We use a diffuse interface method for solving Poisson's equation with a Dirichlet condition on an embedded curved interface. The resulting diffuse interface problem is identified as a standard Dirichlet problem on approximating regular domains. We estimate the errors introduced by these domain perturbations, and prove convergence and convergence rates in the H1-norm, the L2-norm and the L∞-norm in terms of the width of the diffuse layer. For an efficient numerical solution we consider the finite element method for which another domain perturbation is introduced. These perturbed domains are polygonal and non-convex in general. We prove convergence and convergences rates in the H1-norm and the L2-norm in terms of the layer width and the mesh size. In particular, for the L2-norm estimates we present a problem adapted duality technique, which crucially makes use of the error estimates derived for the regularly perturbed domains. Our results are illustrated by numerical experiments, which also show that the derived estimates are sharp.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.