Abstract

The improved moving least-square (IMLS) approximation is a method to form shape functions in meshless methods. For the application of IMLS-based meshless methods to the numerical solution of boundary value problems, it is fundamental to analyze error of the IMLS approximation in Sobolev spaces. This paper begins by discussing properties of the IMLS shape function. Under appropriate assumption on weight functions, error estimates for the IMLS approximation are then established in Sobolev spaces in multiple dimensions. The improved element-free Galerkin (IEFG) method is a typical meshless Galerkin method based on coupling the IMLS approximation and Galerkin weak form. Error analysis of the IEFG method is also provided. Numerical examples are finally presented to prove the theoretical error results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.