Abstract

We derive rigorous bounds on the error resulting from the approximation of the solution of parametric hyperbolic scalar conservation laws with ReLU neural networks. We show that the approximation error can be made as small as desired with ReLU neural networks that overcome the curse of dimensionality. In addition, we provide an explicit upper bound on the generalization error in terms of the training error, number of training samples and the neural network size. The theoretical results are illustrated by numerical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call