Abstract
We compute the two-loop renormalization functions, in the RI $^\prime$ scheme, of local bilinear quark operators $\bar{\psi}\Gamma\psi$, where $\Gamma$ denotes the Scalar and Pseudoscalar Dirac matrices, in the lattice formulation of QCD. We consider both the flavor non-singlet and singlet operators; the latter, in the scalar case, leads directly to the two-loop fermion mass renormalization, $Z_m$. As a prerequisite for the above, we also compute the quark field renormalization, $Z_{\psi}$, up to two loops. We use the clover action for fermions and the Wilson action for gluons. Our results are given as a polynomial in $c_{SW}$, in terms of both the renormalized and bare coupling constant, in the renormalized Feynman gauge. We also confirm the 1-loop renormalization functions, for generic gauge. Finally, we present our results in the $\bar{MS}$ scheme, for easier comparison with calculations in the continuum. The corresponding results, for fermions in an arbitrary representation, are included in an Appendix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review D
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.