Abstract

The Cauchy problem for the Kadomtsev-Petviashvili-II equation (u_t+u_{xxx}+uu_x)_x+u_{yy}=0 is considered. A small data global well-posedness and scattering result in the scale invariant, non-isotropic, homogeneous Sobolev space \dot H^{-1/2,0}(R^2) is derived. Additionally, it is proved that for arbitrarily large initial data the Cauchy problem is locally well-posed in the homogeneous space \dot H^{-1/2,0}(R^2) and in the inhomogeneous space H^{-1/2,0}(R^2), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.