Abstract
The cubic equation of state (CEoS) is a powerful method for calculation of (vapor + liquid) equilibrium in polymer solutions. Using CEoS for both the vapor and liquid phases allows one to calculate the non-ideality of polymer solutions based on a single EoS approach. In this research, vapor–liquid equilibrium calculations of Polyethylene glycol(Polyethylene oxide)/solvent solutions were carried out. In this approach eight models containing PRSV and SRK CEoS separately combined with four mixing rules namely one-parameter van der Waals one-fluid, two-parameter van der Waals one-fluid (vdW2), Wong–Sandler, and Zhong–Masuoka were applied to calculations of bubble point pressure. For the better prediction, the adjustable binary interaction parameters existing in any mixing rule were optimized. The results were very acceptable and satisfactory. The results of absolute average deviations between predicted results and experimental bubble point pressure data were calculated and presented. Although the capability of two cubic equations of state had a good agreement with experimental data and predict the correct type of phase behavior in all cases, the performance of the PRSV+vdW2 was more reliable than the other models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.