Abstract

Next-generation sequencing has opened the door to the reconstruction of viral populations and examination of the composition of mutant spectra in infected cells, tissues, and host organisms. In this chapter we present details on the use of the Shannon entropy method to estimate the site-specific nucleotide relative variability of turnip crinkle virus, a positive (+) stranded RNA plant virus, in a large dataset of short RNAs of Cicer arietinum L., a natural reservoir of the virus. We propose this method as a viral metagenomics tool to provide a more detailed description of the viral quasispecies in infected plant tissue. Viral replicative fitness relates to an optimal composition of variants that provide the molecular basis of virus behavior in the complex environment of natural infections. A complete description of viral quasispecies may have implications in determining fitness landscapes for host-virus coexistence and help to design specific diagnostic protocols and antiviral strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.