Abstract

Dynamic fracture initiation toughness of marble was tested using two types of the holed-cracked flattened Brazilian disc (HCFBD) specimens, which were diametrically impacted at the flat end of the disc by the split Hopkinson pressure bar (SHPB) of 100 mm diameter. One type of the discs is geometrically similar with different outside diameter of 42 mm, 80 mm, 122 mm and 155 mm respectively, and with crack length being half the diameter; another type of the discs has identical 80 mm diameter and different crack length. Issues associated with determination of the stress wave loading by the SHPB system and the crack initiation time in the disc specimen were resolved using strain gage technique. The stress waves recorded on the bars and the disc failure patterns are shown and explained. The tested dynamic fracture toughness increases obviously with increasing diameter for the geometrically similar HCFBD specimens. It changes moderately for the one-size specimens of identical diameter and different crack length. The size effect of rock dynamic fracture toughness is mainly caused by the fracture process zone length l and fracture incubation time τ, the latter being an additional influencing factor for the dynamic loading as compared with the counterpart static situation. Hence a method is proposed to determine a unique value for the dynamic fracture initiation toughness, the approach takes average of the local distribution and time history for dynamic stress intensity factor in the spatial-temporal domain, which is defined by l and τ jointly. In this way the dynamic size effect is minimized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call