Abstract
To analyze the correlations of summer anoxia/hypoxia in the Chesapeake Bay with watershed input and wind conditions, statistics were applied to nearly three decades of monitoring data. The results of Pearson correlation coefficients, multivariate regression analysis, and cluster analysis indicate that anoxia/hypoxia has a strong positive correlation with nutrient load and a moderate negative correlation with wind speed. Physical relationships among the relevant constituents were analyzed. Nutrient loads and the subsequent decay of organic matter are the primary factors that control the oxygen demand causing summer anoxia and hypoxia, while episodic wind can partially erode stratification and reduce anoxia/hypoxia. Although the extent of anoxia/hypoxia reduction differs with wind direction, higher wind speeds result in more destratification and anoxia/hypoxia reduction than lower wind speeds and are more important than the effect of wind direction. The influences of freshwater discharge, stratification, and temperature were also analyzed. Computer modeling results were used to obtain dissolved oxygen conditions at finer temporal and spatial scales to supplement the scattered and discrete observations from monitoring stations and for better understanding of anoxia/hypoxia development under episodic wind events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.