Abstract

A symmetric zero mass tensor of rank two is constructed using the superstring modes of excitation which satisfies the physical state constraints of a superstring. These states have one to one correspondence with quantised operators and are shown to be the absorption and emission quanta of the Minkowski space Lorentz tensors using the Gupta-Bleuler method of quantisation. The principle of equivalence makes the tensor identical to the metric tensor at any arbitrary space-time point. The propagator for the quantised field is deduced. The gravitational interaction is switched on by going over from ordinary derivatives to coderivatives.The Riemann-Christoffel affine connections are calculated and the weak field Ricci tensor $R^{0}_{\mu \nu}$ is shown to vanish. The interaction part $R^{int}_{\mu \nu}$ is found out and the exact $R_{\mu \nu}$ of theory of gravity is expressed in terms of the quantised metric. The quantum mechanical self energy of the gravitational field, in vacuum, is shown to vanish. It is suggested that quantum gravity may be renormalisable by the use of the physical ground states of the superstring theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.