Abstract

Biochars are recognised for their ability to improve soil functions and to stimulate plant defense mechanisms. We evaluated the response of Fusarium oxysporum f. sp. lycopersici chlamydospores to tomato plants grown in biochar and compost amended soil to get a deeper insight into the tomato-Fusarium pathosystem. Wood chips and green waste biochar in combination with compost (‘WCBcomp and GWBcomp’ respectively) were studied for their ability to suppress the Fusarium chlamydospores infectivity. Plant growth parameters and in vitro effects on chlamydospores were determined. The ‘GWBcomp’ soil amendment stimulated plants growth and gaseous exchange rates and had a suppressive effect on the chlamydospore infectivity in comparison with the ‘WCBcomp’ treatment and the treatment containing compost only. The germination rate of chlamydospores was unaffected by the source of root exudates, whereas the mycelial growth was significantly higher in root exudates from chlamydospore inoculated plants grown in ‘WCBcomp’ amended soil unlike to ‘GWBcomp’ amended soil. Overall, our findings indicate that both biochars had a variable effect on chlamydospores. We conclude that soil amendment with garden waste biochar and compost exhibit a great potential in suppressing Fusarium chlamydospore infectivity and alleviating pathogen–induced physiological stress in tomato plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.