Abstract
We consider one possible approach to the problem of describing the dependence of material plastic strain characteristics on the stress hydrostatic component arising in many porous, fractured, and other inhomogeneous materials. The plastic strain of the media under study is investigated under the plasticity assumption in the corresponding generalized form with the use of the form parameter of the stress state. The plasticity constitutive relations are stated on the basis of the plastic flow law associated with the accepted plasticity condition. For the conditions of plane stress state in the framework of the material rigid-plastic model, a system of partial differential equations is obtained and conditions for its hyperbolicity are determined. The relations for determining the stress fields and velocity fields in plastic domains are obtained, and their properties are investigated. The problem of tension of a strip with symmetric angular notches is solved, where the stress fields are determined and the continuous displacement rate field is constructed. The problem of uniform symmetric tension of a plane with a circular hole is considered. The stress fields in a strip with symmetric circular notches are examined. A comparison with solutions for plastically incompressible media whose properties are invariant with respect to the form of the stress state is performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.