Abstract

Operational earthquake forecasting (OEF) relies on real-time monitoring of seismic activity in an area of interest to provide constant (e.g., daily) updates of the expected number of events exceeding a certain magnitude threshold in a given time window (e.g., 1 week). It has been demonstrated that the rates from OEF can be used to estimate expected values of the seismic losses in the same time interval OEF refers to. This is a procedure recently defined as operational earthquake loss forecasting (OELF), which may be the basis for rational short-term seismic risk assessment and management. In Italy, an experimental OELF system, named MANTIS-K, is currently under testing. It is based on weekly rates of earthquakes exceeding magnitude (M) 4, which are updated once a day or right after the occurrence in the country of an M 3.5+ earthquake. It also relies on large-scale structural vulnerability and exposure data, which serve to the system to provide continuously the weekly expected number of: (1) collapsed buildings, (2) displaced residents, and (3) casualties. While the probabilistic basis of MANTIS-K was described in previous work, in this study OELF is critically discussed with respect to three recent Italian seismic sequences. The aim is threefold: (1) illustrating all the features of the OELF system in place; (2) providing insights to evaluate whether if it would have been a useful additional tool for short-term management; (3) recognizing common features, if any, among the losses computed for different sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call