Abstract

The Neogene stratigraphic series is characterized by predominant clayey facies alternated by other sand layers. The outcrop and subsurface studies show varied and complex styles of deformations and lead to relate the structures to paleoseismic events. The seismicity of eastern onshore and offshore Tunisian margin follows the master fault corridors oriented globally N–S, E–W, and NW–SE that correspond to the bordering faults of grabens and syncline corridors and associated faulted drag fold structures oriented NE–SW. Epicenters of magnitudes between 3 and 5 are located along these border fault corridors. The Neogene strata record brittle structures, including numerous and deep faults and fractures with straight and high-angle dipping planes. The structuring of NE–SW en echelon folds and synclines inside and outside NW–SE and E–W right lateral and N–S and NE–SW left lateral tectonic corridors indicates the strike-slip type of bordering faults and their seismogenic nature. Wrench fault movements that induce mud and salt diapirs, mud volcanoes, and intrusive ascensions are related to seismic shocks. Seismic waves caused by activity along one, or most likely, several tectonic structures would have propagated throughout the Quaternary cover producing seismites. The similarity of deposits, structuring, and seismites between the Tunis-Bizerte to the North and Hammamet-Mahdia to the South accredits the hypothesis that the seismic episodes might have affected sedimentation patterns along the Sahalian large geographic area. The paleoseismic events in northeastern Tunisia might be related to tectonic fault reactivations through time. This hypothesis is consistent with the geomorphologic context of the study area, characterized by several morphostructural lineaments with strong control on the sediment distribution, as well as uplifted and subsiding terrains. The estimated magnitude of the seismic events and the great regional tectonically affected areas demonstrate that the northeastern Tunisia experienced stress through the last geological episodes of its evolution. This Neogene kinematic reconstruction highlights the neotectonic system inducing the actual seismicity on this margin. Therefore, there is a straight relationship between deepseated faults and seismicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.