Abstract
To mechanistically analyze effects of the medium-chain fatty acid laurate on transepithelial permeability in confluent monolayers of the intestinal epithelial cell line HT-29/B6, in context with an application as an absorption enhancer improving transepithelial drug permeation.Transepithelial resistance and apparent permeability for paracellular flux markers was measured using Ussing-type chambers. Two-path impedance spectroscopy was employed to differentiate between transcellular and paracellular resistance, and confocal imaging and Western blotting was performed.Laurate resulted in a substantial and reversible decrease in transepithelial resistance by 50% which was attributed to a decrease in paracellular resistance. Simultaneously, an increase in permeability for fluorescein (330 Da) was detected, while permeabilities for 4 kDa FITC-dextran and sulpho-NHS-SS-biotin (607 Da) remained unaltered. Confocal laser-scanning microscopy revealed a marked reduction of claudin-5, while other tight junction proteins including tricellulin, a protein preventing the paracellular passage of macromolecules, were not affected.Laurate induces an increase in paracellular permeability for molecules up to a molecular mass of 330 Da by retrieval of claudin-5 from tight junctions without affecting tricellular contacts and the paracellular passage of macromolecules. We hereby provide, for the first time, a mechanistical explanation of laurate-induced permeability enhancement on molecular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.