Abstract

The Double Chooz experiment presents improved measurements of the neutrino mixing angle θ13 using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the ν¯¯¯e signal has increased. The value of θ13 is measured to be sin2 2θ13 = 0.090+ 0.032− 0.029 from a fit to the observed energy spectrum. Deviations from the reactor ν¯¯¯e prediction observed above a prompt signal energy of 4 MeV and possible explanations are also reported. A consistent value of θ13 is obtained from a fit to the observed rate as a function of the reactor power independently of the spectrum shape and background estimation, demonstrating the robustness of the θ13 measurement despite the observed distortion.

Highlights

  • A mistake has been found in the calculation of statistical error bars of figures 21 and 22 for bins above 8 MeV

  • It affects only the graphical presentation and does not change the fitted θ13 value and other results of the paper

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call