Abstract

The electrochemical dissolution of Pt in several ionic liquids (ILs) was studied. Different ILs were tested assessing their potential to dissolve Pt. Dissolution rate and current efficiency were evaluated. The main focus was on Cl containing ILs: first generation, eutectic-based ILs and second generation ILs with discrete anions. Pt dissolution only occurred in type 1 eutectic-based ILs with a max. dissolution rate of 192.2 g m−2 h−1 and a max. current efficiency of 99 % for the ZnCl2–1-ethyl-3-methylimidazolium chloride IL, and 9.090 g m−2 h−1 and 96 % for the 1:1 ZnCl2–choline chloride IL. The dissolution occurred through the formation of [PtClx]y− complexes. To form these complexes, addition of a metal chloride was necessary. Furthermore, an IL with an electrochemical window of 1.5 V, preferably 2.0 V was required to achieve Pt dissolution. The added metal salt needed to have a higher decomposition potential than 1.5 V or should be a Pt salt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call