Abstract

Naturally occurring gas hydrates are potential future energy source. A significant amount of gas hydrates is interpreted through seismic reflection data in the form of bottom simulating reflector (BSR) present in the sediments of the convergent continental margin of Pakistan. However, the seismic character of these hydratebearing unconsolidated sediments is not properly investigated. Since no direct measurements are available for quantitative estimation of gas hydrate and free gas in these sediments, therefore detailed knowledge of seismic velocities is essential. Seismic velocities of the gas hydrate-bearing sediments in the study area are estimated by using the effective medium theory and the fluid substitution modeling. The results show that the presence of gas hydrates increases the stiffness of the unconsolidated sediments; whereas the presence of free gas decreases the stiffness of these sediments. It is noted that seismic velocities and density of hydrate-bearing sediments are highly affected by saturation and distribution pattern of gas hydrates. The hydrate-bearing sediments seem to be characterized not only by high P-wave velocity (about 2800 m/s) but also by anomalously low S-wave velocity (about 850 m/s). As pure gas-hydrates have much higher seismic velocities than those of host sediments, presence of gas-hydrate increases the seismic velocities, whereas free-gas below the hydrate-bearing sediments decreases the velocities. Seismic reflection from the BSR exhibits a wide range of amplitude variation with offset characteristics, which depend upon the saturation and distribution of hydrates above and free gas below the BSR. We have also demonstrated that some attributes like acoustic and shear impedances, and AVO can be used as important proxies to detect gas hydrate saturation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.