Abstract

Thin-film transistors (TFTs) were fabricated using In-Ga-Zn-O (IGZO) semiconductor layers deposited under different oxygen partial pressures. The devices were subjected to negative bias stress (NBS), negative bias illumination stress (NBIS), positive bias stress (PBS) and positive bias illumination stress (PBIS). While device degradation is negligible under NBS, negative shifts in the threshold voltage (Vth) are observed in the presence of light (NBIS), of which the magnitude (ΔVth) decreases with increasing oxygen partial pressure during IGZO growth. Under PBS, the devices undergo positive Vth shifts, which become more severe with increasing oxygen content in IGZO. However, negative ΔVth values are observed under PBIS, of which the magnitude decreases with increasing oxygen content in the semiconductor. When positive gate bias is applied, the trapping of negative charge by interstitial oxygen atoms in IGZO is presumed to be the driving force inducing positive Vth shifts. On the other hand, when light is present, the generation of photo-induced excess carriers from oxygen-deficient defect sites is anticipated to be the driving force inducing negative Vth shifts. A balance between the competing mechanisms inducing either positive or negative Vth shifts must therefore be established when the devices are subjected to PBIS, for example in operating active matrix organic light emitting diode (AMOLED) displays using transparent panel arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.