Abstract

In theories with large extra dimensions, supernova (SN) cores are powerful sources of Kaluza-Klein (KK) gravitons. A large fraction of these massive particles are gravitationally retained by the newly born neutron star (NS). The subsequent slow KK decays produce potentially observable gamma rays and heat the NS. We here show that the back-absorption of the gravitationally trapped KK gravitons does not significantly change our previous limits. We calculate the graviton emission rate in a nuclear medium by combining the low-energy classical bremsstrahlung rate with detailed-balancing arguments. This approach reproduces the previous thermal emission rate, but it is much simpler and allows for a calculation of the absorption rate by a trivial phase-space transformation. We derive systematically the dependence of the SN and NS limits on the number of extra dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call