Abstract

Cohort data are often incomplete because some subjects drop out of the study, and inverse probability weighting (IPW), multiple imputation (MI), and linear increments (LI) are methods that deal with such missing data. In cohort studies of ageing, missing data can arise from dropout or death. Methods that do not distinguish between these reasons for missingness typically provide inference about a hypothetical cohort where no one can die (immortal cohort). It has been suggested that inference about the cohort composed of those who are still alive at any time point (partly conditional inference) may be more meaningful. MI, LI, and IPW can all be adapted to provide partly conditional inference. In this article, we clarify and compare the assumptions required by these MI, LI, and IPW methods for partly conditional inference on continuous outcomes. We also propose augmented IPW estimators for making partly conditional inference. These are more efficient than IPW estimators and more robust to model misspecification. Our simulation studies show that the methods give approximately unbiased estimates of partly conditional estimands when their assumptions are met, but may be biased otherwise. We illustrate the application of the missing data methods using data from the 'Origins of Variance in the Old-old' Twin study.

Highlights

  • Advance Access publication on February 15, 2018

  • Erratum: Methods for handling longitudinal outcome processes truncated by dropout and death

  • The publisher regrets that the information in the second last row of the final three columns of table 3 was incomplete in the originally published version

Read more

Summary

Introduction

Advance Access publication on February 15, 2018

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.