Abstract

A lichen is a slow-growing niche-constructing organism that forms a thallus via scripted symbiotic/mutualist relationships between fungi, algae, and bacteria. Here we use quick-freeze deep-etch electron microscopy (QFDEEM), in conjunction with light microscopy, to document the structural manifestations of hyphal differentiation during the formation of three lichen tissues that localize between the algal layer and the surface of the thallus: the outer cortex of foliose lobes; the outer layer of fruticose stems; and the enwrapping layer of asexual propagules called soredia that protrude from squamulose podetia and foliose lobes. Our observations document features of outer-layer architecture and the role played by extracellular matrices (ECM). They also lead us to propose the medullary stem-cell hypothesis for lichen organization wherein totipotent medullary hyphae produce lateral branches that undergo specific differentiation pathways in specific domains of the thallus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call