Abstract

The coupled kinetic equation for density and spin Wigner functions is derived including spin-orbit coupling, electric and magnetic fields, and self-consistent Hartree mean fields suited for SU(2) transport. The interactions are assumed to be with scalar and magnetic impurities as well as scalar and spin-flip potentials among the particles. The spin-orbit interaction is used in a form suitable for solid state physics with Rashba or Dresselhaus coupling, graphene, extrinsic spin-orbit coupling, and effective nuclear matter coupling. The deficiencies of the two-fluid model are worked out consisting of the appearance of an effective in-medium spin precession. The stationary solution of all these systems shows a band splitting controlled by an effective medium-dependent Zeeman field. The self-consistent precession direction is discussed and a cancellation of linear spin-orbit coupling at zero temperature is reported. The precession of spin around this effective direction caused by spin-orbit coupling leads to anomalous charge and spin currents in an electric field. Anomalous Hall conductivity is shown to consist of the known results obtained from the Kubo formula or Berry phases and a symmetric part interpreted as an inverse Hall effect. Analogously the spin-Hall and inverse spin-Hall effects of spin currents are discussed which are present even without magnetic fields showing a spin accumulation triggered by currents. The analytical dynamical expressions for zero temperature are derived and discussed in dependence on the magnetic field and effective magnetizations. The anomalous Hall and spin-Hall effect changes sign at higher than a critical frequency dependent on the relaxation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call