Abstract

Narrow, elongated regions of very low polarized intensity -- so-called canals -- have recently been observed by several authors at decimeter wavelengths in various directions in the Milky Way, but their origin remains enigmatic. We show that the canals arise from depolarization by differential Faraday rotation in the interstellar medium and that they represent level lines of Faraday rotation measure RM, a random function of position in the sky. Statistical properties of the separation of canals depend on the autocorrelation function of RM, and so provide a useful tool for studies of interstellar turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.