Abstract

Abstract In this study, we systematically analyze the effects of hydrogen enrichment in the well-known PRECCINSTA burner, a partially premixed swirl-stabilized methane/air combustor. Keeping the equivalence ratio and thermal power constant, we vary the hydrogen percentage in the fuel. Successive increments in hydrogen fuel fraction increase the adiabatic flame temperature and also shift the dominant frequencies of acoustic pressure fluctuations to higher values. Under hydrogen enrichment, we observe the emergence of periodicity in the combustor resulting from the interaction between acoustic modes. As a result of the interaction between these modes, the combustor exhibits a variety of dynamical states, including period-1 limit cycle oscillations (LCO), period-2 LCO, chaotic oscillations, and intermittency. The flame and flow behavior is found to be significantly different for each dynamical state. Analyzing the coupled behavior of the acoustic pressure and the heat release rate oscillations during the states of thermoacoustic instability, we report the occurrence of 2:1 frequency-locking during period-2 LCO, where two cycles of acoustic pressure lock with one cycle of the heat release rate. During period-1 LCO, we notice 1:1 frequency-locking, where both acoustic pressure and heat release rate repeat their behavior in every cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.