Abstract

A set of functions spanning the solution space of the integral transport equation near a boundary in semi-infinite plane geometry is obtained and used to reduce the problem to that of a system of linear algebraic equations. Expressions for the boundary angular flux are obtained by matrix multiplication, and the theory is extended to adjacent half-space problems by matching the angular flux at the boundary. Thus a unified theory is obtained for well-behaved arbitrary sources in semi-infinite plane geometry. Numerical results are given for both Milne's problem and the problem of constant production in adjacent half-spaces, and albedo problems in semi-infinite geometry. The solutions for the flux density are best near the boundary, and for the angular flux are best for angles near the plane of the boundary; it is conjectured that the theory will prove most useful when extended to arrays of finite slabs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.