Abstract

AbstractThis paper aims on evaluating the erosion wear behavior of epoxy composites reinforced with ramie fibers. The possibility of reinforcing ramie fiber to improvise the wear resistance of epoxy is investigated in this study. Composites are fabricated by reinforcing multiple layers of woven ramie fiber mats into epoxy resin using conventional wet lay‐up technique and erosion wear trials are conducted using solid particle erosion test setup. Taguchi analysis is done to assess the relative significance of each of the factors influencing the erosion rate using L16 orthogonal array. The analysis reveals that the impact velocity followed by impingement angle are the most significant control factors affecting the erosion wear rate of ramie‐epoxy composites. Steady state erosion analysis is done to ascertain the effect of each of the significant factors while keeping other factors fixed. Further, an analytical and predictive model based on the principle of neural computation is used to predict the rate of erosion wear of the composites and the obtained results are compared with the experimental outcomes. The worn morphologies of the eroded surfaces of the composites are studied and analyzed to identify possible mechanisms causing wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call