Abstract

Slurry erosion wear performance of glass fibre reinforced vinylester composite (FRP) has been studied using a pilot-scale erosion test apparatus. Tests were conducted at elevated temperatures in aqueous and acidic environments. When using fine quartz as an abrasive material, FRP showed higher mass losses in the aqueous environment than in the acidic conditions, especially at higher temperatures. In this case, the FRP degradation was governed by the penetration of the used medium into the FRP structure. According to the absorption studies, the weight gain of the laminate was more pronounced in the water immersion compared to the acidic solution, which can be a prediction of an increased degradation rate and explain the higher wear in the aqueous medium. When the abrasive material was changed from fine to coarse quartz, the removal of the shielding matrix phase was extensive and a direct route for the acidic solution to the fibres was created causing more severe damage. This was also shown in scanning electron microscopy (SEM) studies, where the samples tested in the acidic solution showed extensive fibre flattening along the erosion flux. By increasing the test temperature close to the boiling point of the medium, an increase in the FRP wear could be seen. The increase in the rotation speed, on the other hand, did not automatically mean higher mass losses. This shows that the wear environment in the present test device is highly complicated with several interrelated parameters affecting the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call