Abstract

The erosion of a continuously reinforced SiC (Sigma 1140 plus)/Ti–6Al–4V composite was investigated with a SiC/water slurry jet at various angles on a plane perpendicular to the direction of the reinforcement. The results demonstrate the combination of both ceramic and metallic properties. Both the low-angle erosion resistance of ceramics as well as the high-angle resistance of a metallic alloy lead to an overall reduction in erosion rate at the various angles. Ti/SiC composite shows the best erosive wear resistance indicating that the combination effect between ductile Ti-based matrix and high strength SiC fibre for continuously fibre-reinforced Ti-based metal matrix composites (MMCs) plays a key role in increasing the erosive resistance. To gain a better understanding of the combination and synergistic enhancement of erosion resistance for two components in SiC/Ti composite materials, a shadowing effect and effect of reducing impact energy on SiC fibre during erosion are discussed. A simple theoretical model based on experimental data and a modified inverse rule-of-mixtures averaging law of erosion resistance for SiC fibre-reinforced MMCs are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.