Abstract

We are analyzing erosion and tritium codeposition for ITER, DIII-D, and other devices with a focus on carbon divertor and metallic wall sputtering, for detached and semi-detached edge plasmas. Carbon chemical-sputtering/hydrocarbon-transport is computed in detail using upgraded models for sputtering yields, species, and atomic and molecular processes. For the DIII-D analysis this includes proton impact and dissociative recombination for the full methane and higher hydrocarbon chains. Several mixed material (Si–C doping and Be/C) effects on erosion are examined. A semi-detached reactor plasma regime yields peak net wall erosion rates of ∼1.0 (Be), ∼0.3 (Fe), and ∼0.01 (W) cm/burn-yr, and ∼50 cm/burn-yr for a carbon divertor. Net carbon erosion is dominated by chemical sputtering in the ∼1–3 eV detached plasma zone. Tritium codeposition in divertor-sputtered redeposited carbon is high (∼10–20 g T/1000 s). Silicon and beryllium mixing tends to reduce carbon erosion. Initial hydrocarbon transport calculations for the DIII-D DiMES-73 detached plasma experiment show a broad spectrum of redeposited molecules with ∼90% redeposition fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call