Abstract

Erosion is one of the most serious problems in various gas and liquid flow passages such as flow in pipes, pumps, turbines, compressors and many other devices. Sand presence causes loss of pipe wall thickness that can lead to pipe erosion, frequent failures and loss of expensive production time. The importance of this problem is mainly due to many related engineering applications, viz. heat exchangers. In order to reduce the frequency of such pipe erosions, caps in the form of replaceable pipes are protruded in the sudden contraction regions which are exposed to most of the serious erosion rates. In the present work, numerical investigation of the erosion of a pipe protruded in a sudden contraction is presented. The turbulent, steady, 2-D axi-symmetric flow inside an axi-symmetric abrupt contraction pipe with a pipe protrusion embedded in it was solved by steady-state time averaged conservation equations of mass and momentum along with two equation model for turbulence. Particles are tracked using Lagrangian particle tracking. An erosion model was employed to investigate the erosion phenomena for the given geometry. The influence of the different parameters such as the inlet flow velocity (3–10 m/s), the particle diameter (10–400 μm), the protruded pipe geometry (thickness T=1–5 mm and depth H=2–5 mm) and the pipe contraction ratio (Cr=0.25–0.5) on the erosion of pipe protrusion was investigated. Correlations for the influence of inlet flow velocity, depth and thickness of the protruded pipe on the erosion rate are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.