Abstract

Erosion seriously threatens the safety of high-speed rotating mechanical components in very harsh service environments, particularly for lightweight titanium alloy matrix material. In order to improve the erosion resistance of titanium alloy, TiAlSiN coatings with different phase compositions are deposited on TC6 titanium alloy using a high-power pulse magnetron sputtering discharge (HPPMS) system under various discharge voltages. The componential and microstructural evolution as well as mechanical properties of the TiAlSiN coatings are evaluated by X-ray diffraction, scanning electron microscopy, and nanoindentation, respectively. The erosion performance relative to titanium alloy is investigated by a sand blasting tester. With the increase in discharge voltage from −500 to −600 V, the peak of discharge current increases from 105 to 225 A. The prepared TiAlSiN coatings show a shift of the preferred crystallographic orientation from (220) to (200), but all of them have a dense nanocomposite structure. Their hardness (H) and elastic modulus (E) gradually increase before decreasing, arriving at maximum values of 35.34 and 360.5 GPa at −570 V. The erosion resistance of the TiAlSiN coatings dependent on the discharge voltage is consistent with the H/E ratio change. The TiAlSiN coatings prepared at −560 V exhibit the optimal erosion resistance, which is 15 times that of the TC6 substrate. The erosion behavior of the coatings is positively correlated with their hardness and toughness. Adjusting the discharge voltage of the HPPMS pulse is finally proved to be an effective way of tailoring the coating phase compositions to improve the erosion resistance of titanium alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call