Abstract

Variations in water level observed in Lakes Michigan and Huron during the last few decades have motivated a comprehensive study involving climatic, hydrologic and hydraulic factors organized by International Joint Commission of the Great Lakes. It has been submitted, among other possible causes, that changes in conveyance in the St. Clair River could be contributing to the lowering of the upper Great Lakes water level. Sediment transport processes, in particular bed scour and erosion, can affect significantly a river's conveyance, thus creating the need to assess the erodibility properties of the river bed. To this end, laboratory tests were performed in order to obtain the value of the critical shear stress needed to erode the cohesive fraction of the bed sediment material, known as glacial till, from the St. Clair River. Different flows with increasing velocities were run up to the point where initial sediment erosion could be observed. Through detailed near-bed velocity measurements using a laser Doppler velocimetry (LDV) system, a value of 4.2 N/m 2 was obtained as the critical shear stress for the erosion of glacial till. A threshold for the critical shear stress for erosion of similar cohesive sediments was also found and expressed in dimensionless form. These results could be used in combination with mathematical models to estimate the risk of scour and erosion at locations where the glacial till is exposed to both strong currents and flow forces induced by the large navigation vessels commonly observed along the course of the St. Clair River.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.