Abstract

An air direct current glow discharge with a hollow cathode was used as source of chemically active oxygen for selective removal of amorphous hydrogenated (a-C:H) films deposited on W, Mo, and stainless steel. The films were removed both directly in the discharge and afterglow region. The film erosion rates depend on the sample position relatively to plasma and decrease in the order: hollow cathode, positive column, afterglow region. It was shown that primary (1–3nm) continuous amorphous and secondary (1–30nm) island-like oxide films were formed on the metal surfaces after removal of the a-C:H films. Polycrystalline island-like oxide films were generated due to recrystallization of the primary films. Material oxidation suppression was caused by reactions of oxygen ion neutralization and atomic oxygen recombination on metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call