Abstract

Abstract Erosion phenomenon of ceramic matrix composites (CMCs), attributed to their unique architectural configurations, is markedly different from conventional monolithic ceramic counterparts. Prior to further integration of CMCs into hot-section components of aeroengines subject to erosive environments, their erosion behavior needs to be characterized, analyzed, and formulated. The erosion behavior of a 2D woven melt-infiltrated (MI) SiC/SiC CMC was assessed in this work as a function of variables such as particle velocity and size. The erosion damage was characterized using appropriate analytical tools such as optical and scanning electron microscopy (SEM). A phenomenological erosion model was developed for SiC/SiC CMC material systems with respect to the kinetic energy of impacting particles in conjunction with nominal density, matrix hardness, and elastic modulus of the SiC/SiC CMCs. The model was in reasonable agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.