Abstract

The role of soil erosion in terrestrial carbon (C) sequestration and release remains one of the most important uncertainties in our attempts to determine the potential of soils to mediate climate change. Despite its widely recognized importance for terrestrial C sequestration, to date, no Earth System Model (ESM) implements soil erosion effects on carbon cycling in sufficient detail. So far, available studies have mostly investigated the magnitude of erosional C transport and in-situ measurements of vertical C fluxes on the catchment or regional scale. Recognizing the need to adequately represent C erosion processes and controls in ESMs, we provide a comprehensive cross-disciplinary review on lateral C redistribution in the landscape and discuss the implications for biogeochemical cycling of carbon. We present current knowledge on the role of erosional C distribution in controlling the stabilization and release of C in soils, taking into consideration the important geomorphic, ecological, hydrologic, pedologic and micro-climatic processes and controls that affect soil organic carbon (SOC) stock, fluxes, and persistence in dynamic landscapes. Further, we provide an overview on latest experimental and modelling approaches that are being used to investigate the role of erosion in the carbon cycle. Finally, to advance our understanding of the role of soil redistribution in biogeochemical cycles of essential elements, we discuss the most promising topics for future research in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call