Abstract

The endoplasmic reticulum (ER) has a unique, network-like morphology. The ER structures are composed of tubules, cisternae, and three-way junctions. This morphology is highly conserved among eukaryotes, but the molecular mechanism that maintains ER morphology has not yet been elucidated. In addition, certain Brassicaceae plants develop a unique ER-derived organelle called the ER body. This organelle accumulates large amounts of PYK10, a β-glucosidase, but its physiological functions are still obscure. We aimed to identify a novel factor required for maintaining the morphology of the ER, including ER bodies, and employed a forward-genetic approach using transgenic Arabidopsis thaliana (GFP-h) with fluorescently-labeled ER. We isolated and investigated a mutant (designated endoplasmic reticulum morphology3, ermo3) with huge aggregates and abnormal punctate structures of ER. ERMO3 encodes a GDSL-lipase/esterase family protein, also known as MVP1. Here, we showed that, although ERMO3/MVP1/GOLD36 was expressed ubiquitously, the morphological defects of ermo3 were specifically seen in a certain type of cells where ER bodies developed. Coimmunoprecipitation analysis combined with mass spectrometry revealed that ERMO3/MVP1/GOLD36 interacts with the PYK10 complex, a huge protein complex that is thought to be important for ER body-related defense systems. We also found that the depletion of transcription factor NAI1, a master regulator for ER body formation, suppressed the formation of ER-aggregates in ermo3 cells, suggesting that NAI1 expression plays an important role in the abnormal aggregation of ER. Our results suggest that ERMO3/MVP1/GOLD36 is required for preventing ER and other organelles from abnormal aggregation and for maintaining proper ER morphology in a coordinated manner with NAI1.

Highlights

  • The endoplasmic reticulum (ER) forms a highly complicated meshwork of structures that consist of ER tubules and ER cisternae

  • We found them surrounded by ribosomes and occasionally connected to typical ER cisternae, indicating that these abnormal structures were derived from ER

  • These results show that the isolated ermo3-1 mutant had morphological defects in the ER and aberrant intracellular distribution of ER and most organelles

Read more

Summary

Introduction

The endoplasmic reticulum (ER) forms a highly complicated meshwork of structures that consist of ER tubules and ER cisternae. In contrast to the high degree of curvature of membranes in ER tubules, the membranes in ER cisternae are arranged in flat planes, a structure that is maintained in mammalian cells by another membrane protein, Climp63 [9]. Most of these proteins, including reticulons and atlastins, are conserved in plant cells and may be involved in regulating ER morphology [10,11,12,13,14,15,16]

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call