Abstract

We identified a 46-kDa ERK, whose kinetics of activation was similar to that of ERK1 and ERK2 in most cell lines and conditions, but showed higher fold activation in response to osmotic shock and epidermal growth factor treatments of Ras-transformed cells. We purified and cloned this novel ERK (ERK1b), which is an alternatively spliced form of ERK1 with a 26-amino acid insertion between residues 340 and 341 of ERK1. When expressed in COS7 cells, ERK1b exhibited kinetics of activation and kinase activity similar to those of ERK1. Unlike the uniform pattern of expression of ERK1 and ERK2, ERK1b was detected only in some of the tissues examined and seems to be abundant in the rat and human heart. Interestingly, in Ras-transformed Rat1 cells, there was a 7-fold higher expression of ERK1b, which was also more responsive than ERK1 and ERK2 to various extracellular treatments. Unlike ERK1 and ERK2, ERK1b failed to interact with MEK1 as judged from its nuclear localization in resting cells overexpressing ERK1b together with MEK1 or by lack of coimmunoprecipitation of the two proteins. Thus, ERK1b is a novel 46-kDa ERK isoform, which seems to be the major ERK isoform that responds to exogenous stimulation in Ras-transformed cells probably due to its differential regulation by MEK.

Highlights

  • This article has been withdrawn by the authors

  • The authors have full confidence in the findings and conclusions of this paper

Read more

Summary

Introduction

This article has been withdrawn by the authors. In Fig. 5, the band shown in lane 6 was pasted in.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call