Abstract
AbstractThe aim of this study was to identify the signal transduction pathways and mechano‐transducers that play critical roles in the processes induced by changes in cyclic hydrostatic pressure and fluid shear in 3‐dimensional (3D) culture systems. Mesenchymal stem cells were loaded into a polymeric scaffold and divided into three groups according to the stress treatment: static, fluid shear, and hydrostatic pressure with fluid shear. Cells were exposed daily to a hydrostatic pressure of 0.2 MPa for 1 min followed by 14 min rest with fluid flow at 30 rpm. Protein extracts were analyzed by Western blot for extracellular signal‐regulated kinase 1/2 (ERK1/2). The complexes were cultured under the mechanical stimuli for 21 days with or without phospho‐ERK1/2 inhibitor (U0126) and evaluated by RT‐PCR, calcium contents, and immunohistochemistry. Under conditions of mechanical stimulation, the activation of ERK1/2 was sustained or increased with time. U0126 suppressed mechanical stimuli‐induced expression of osteocalcin. In addition, calcium contents and the degrees of osteocalcin and osteopontin staining were decreased by this inhibitor. These results demonstrate that mechanical stimuli, particularly hydrostatic pressure with fluid shear, enhance osteogenesis in 3D culture systems via ERK1/2 activation. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.