Abstract

Uncertainty persists regarding the specific chemical causal factors and their corresponding behavioral effects in anxiety disorders. Commonly employed first-line treatments for anxiety target G protein-coupled receptors (GPCRs), including inhibitors of monoaminergic systems. Alternatively, emerging natural bioactive strategies offer potential for mitigating adverse effects. Recent investigations have implicated adenosine in anxiety-triggering mechanisms, while eritadenine, an adenosine analog derived from Shiitake mushroom, has displayed promising attributes. This study explores eritadenine's potential as a bioactive substance for anxiety disorders in mice, employing behavioral tests, pentobarbital-sleep induction, and molecular docking. Behavioral test results reveal a pronounced anxiolytic and sedative-hypnotic pharmacological effect of eritadenine. Our findings suggest that eritadenine may modulate locomotor functions mediated by adenosine receptors, with a stronger affinity for binding to A2AAR over A1AR, thus eliciting these effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call