Abstract

Feminization-1c (Fem-1c) is important for sex differentiation in the model organism Caenorhabditis elegans. In our previous study, the basic molecular characteristics of the Fem-1c gene (EsFem-1c) in Eriocheir sinensis (Henri Milne Edwards, 1854) were cloned to determine the relationship with sex differentiation. In this study, the genomic sequence of EsFem-1c contained five exons and four introns, with an exceptionally long 3'UTR sequence. The qRT-PCR results of EsFem-1c demonstrated lower tissue expression in the androgenic gland of the intersex crab than the normal male crab, implying that EsFem-1c plays a role in crab AG development. RNA interference experiments and morphological observations of juvenile and mature crabs indicated that EsFem-1c influences sexual development in E. sinensis. A dual-luciferase reporter assay disclosed that tcf-miR-315-5p effectively inhibits the translation of the EsFem-1c gene, influencing male development. An intriguing finding was that miRNA tcf-miR-307 could increase EsFem-1c expression by binding to the alternative splicing region with a length of 248 bp (ASR-248) in the 3'UTR sequence. The present research contributes to a better understanding of the molecular regulation mechanism of EsFem-1c and provides a resource for future studies of the miRNA-mediated regulation of sexual development and regulation in E. sinensis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.