Abstract

PurposeThe purpose of this paper is to investigate the thermoelastic interactions in a homogeneous, transversely isotropic infinite medium with a spherical cavity in the context of two temperature Lord-Shulman (2TLS) generalized theory of thermoelasticity considering Eringen’s nonlocal theory and memory dependent derivative (MDD). Memory-dependent derivative is found to be better than fractional calculus for reflecting the memory effect which leads us to the current investigation.Design/methodology/approachThe governing field equations of the problem are solved analytically using the eigenvalue approach in the transformed domain of Laplace when the cavity’s boundary is being loaded thermomechanically. Using MATLAB software the numerical solution in real space-time domain is obtained by Stehfest method.FindingsNumerical results for the different thermophysical quantities are presented in graphs and the effects of delay time parameter, non-local parameter and two temperature parameters are studied thereafter. The outcomes of this study convince that the displacement u, conductive temperature ϕ, thermodynamic temperature θ are concave upward whereas radial stress τrr is concave downward for every choice of delay time parameter ω, two temperature parameter η and non-local parameter “ζ”. As a specific instance of our findings, the conclusions of an equivalent problem involving integer order thermoelasticity theory can be obtained, and the corresponding results of this article can be readily inferred for isotropic materials.Originality/valueThe novelty of this research lies in the adoption of generalized thermoelastic theory with memory dependent derivative and Eringen’s nonlocality for analyzing the thermoelastic interactions in an infinite body with spherical cavity by employing eigenvalue approach. It has applications to many thermo-dynamical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.