Abstract

Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease and is closely associated with metabolic syndrome. Endothelial dysfunction was involved in many metabolic diseases, but the concrete participation of hepatic vascular endothelial dysfunction in liver steatosis that is an early stage of NAFLD is still unclear. In this study, the formation of liver steatosis and the elevation of serum insulin content were observed accompanying with the decreased vascular endothelial cadherin (VE-cadherin) expression in hepatic vessels from db/db mice, Goto-Kakizaki (GK) and high-fat diet (HFD)-fed rats. Liver steatosis was obviously enhanced in mice after the application of VE-cadherin neutralizing antibody. In vitro results showed that insulin decreased VE-cadherin expression and caused endothelial barrier breakdown. Furthermore, the alteration of VE-cadherin expression was found to be positively related with the transcriptional activation of nuclear erythroid 2-related factor 2 (Nrf2), and chromatin immunoprecipitation (ChIP) assay displayed that Nrf2 could directly regulate VE-cadherin expression. Insulin reduced Nrf2 activation by decreasing sequestosome-1 (p62/SQSTM1) expression downstream of insulin receptor. Moreover, the p300-mediated Nrf2 acetylation was weakened by enhancing the competitive binding of transcription factor GATA-binding protein 4 (GATA4) to p300. Finally, we found that erianin, a natural compound, could promote VE-cadherin expression by inducing Nrf2 activation, thereby alleviating liver steatosis in GK rats. Our results suggest that hepatic vascular endothelial dysfunction owing to the VE-cadherin deficiency dependent on the reduced Nrf2 activation promoted liver steatosis, and erianin alleviated liver steatosis through enhancing Nrf2-mediated VE-cadherin expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call