Abstract

Myocardial infarction (MI) remains the leading cause of cardiovascular death worldwide. Studies have shown that soluble fms-like tyrosine kinase-1 (sFlt-1) has a harmful effect on the heart after MI. However, ergothioneine (ERG) has been shown to have protective effects in rats with preeclampsia by reducing circulating levels of sFlt-1. In this study, we aimed to investigate the mechanism by which ERG protects the heart after MI in rats. Our results indicate that treatment with 10 mg/kg ERG for 7 days can improve cardiac function as determined by echocardiography. Additionally, ERG can reduce the size of the damaged area, prevent heart remodeling, fibrosis, and reduce cardiomyocyte death after MI. To explain the mechanism behind the cardioprotective effects of ERG, we conducted several experiments. We observed a significant reduction in the expression of monocyte chemoattractant protein-1 (MCP-1), p65, and p-p65 proteins in heart tissues of ERG-treated rats compared to the control group. ELISA results also showed that ERG significantly reduced plasma levels of sFlt-1. Using Glutaredoxin-1 (GLRX) and CD31 immunofluorescence, we found that GLRX was expressed in clusters in the myocardial tissue surrounding the coronary artery, and ERG can reduce the expression of GLRX caused by MI. In vitro experiments using a human coronary artery endothelial cell (HCAEC) hypoxia model confirmed that ERG can reduce the expression of sFlt-1, GLRX, and Wnt5a. These findings suggest that ERG protects the heart from MI damage by reducing s-glutathionylation through the NF-ĸB-dependent Wnt5a-sFlt-1 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call