Abstract
We show the strong well-posedness of SDEs driven by general multiplicative L\'evy noises with Sobolev diffusion and jump coefficients and integrable drift. Moreover, we also study the strong Feller property, irreducibility as well as the exponential ergodicity of the corresponding semigroup when the coefficients are time-independent and singular dissipative. In particular, the large jump is allowed in the equation. To achieve our main results, we present a general approach for treating the SDEs with jumps and singular coefficients so that one just needs to focus on Krylov's {\it apriori} estimates for SDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.