Abstract
A Markov channel is a discrete information channel that includes as special cases the finite state channels and finite state codes of information theory. Kieffer and Rahe proved that one-sided and two-sided Markov channels have the following property: If the input source to a Markov channel is asymptotically mean stationary (AMS), then so is the resulting input-output process and hence the ergodic theorem and the Shannon-McMillan-Breiman theorem hold for the input-output process. Kieffer and Rahe also provided a sufficient condition for any AMS ergodic source to yield an AMS ergodic input-output process. New conditions for a Markov channel to have this ergodicity property are presented and discussed here. Several relations are developed among various classes of channels, including weakly ergodic, indecomposable, and strongly mixing channels. Some connections between Markov channels and the theory of nonhomogeneous Markov chains are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.