Abstract

The quantum simulation of gauge theories on synthetic quantum matter devices has gained a lot of traction in the last decade, making possible the observation of a range of exotic quantum many-body phenomena. In this work, we consider the spin-1/2 quantum link formulation of 1+1D quantum electrodynamics with a topological θ-angle, which can be used to tune a confinement-deconfinement transition. Exactly mapping this system onto a PXP model with mass and staggered magnetization terms, we show an intriguing interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation. We map out the rich dynamical phase diagram of this model, finding an ergodic phase at small values of the mass μ and confining potential χ, an emergent integrable phase for large μ, and a fragmented phase for large values of both parameters. We also show that the latter hosts resonances that lead to a vast array of effective models. We propose experimental probes of our findings, which can be directly accessed in current cold-atom setups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call