Abstract
We study disorder-induced ergodicity breaking transition in high-energy eigenstates of interacting spin-1/2 chains. Using exact diagonalization we introduce a cost function approach to quantitatively compare different scenarios for the eigenstate transition. We study ergodicity indicators such as the eigenstate entanglement entropy and the spectral level spacing ratio, and we consistently find that an (infinite-order) Kosterlitz-Thouless transition yields a lower cost function when compared to a finite-order transition. Interestingly, we observe that the transition point in finite systems exhibits nearly thermal properties, i.e., ergodicity indicators at the transition are close to the random matrix theory predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.