Abstract

Many soft materials, such as gels or glasses, exhibit both a fast and a very slow relaxation behavior, often related to thermally activated processes restoring ergodicity. Pusey and Van Megen (Physica A 157 (1989) 705), have elaborated a theory that allows the usage of standard light scattering techniques to treat systems that are dynamically arrested, or non-ergodic, over the experimental time-scale. This theory concerning the distribution of intensity scattered by non-ergodic media is here extended, by taking into account second order temporal coherence of scattered radiation. The time-integrated intensity distribution function so obtained allows to distinguish between fast and slow contributions when the two time scales are not (or not yet) completely separated. Thus, by simple and quick static light scattering measurements one can follow an ergodic-to-non-ergodic transition. We present an experiment on gelation kinetics of sucrose–pectin systems, which illustrates the quality of the method, and show how the gel network is formed out of a homogeneous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.